Representation and Index Theory for Toeplitz Operators

نویسنده

  • G. J. MURPHY
چکیده

We study Toeplitz operators on the Hardy spaces of connected compact abelian groups and of tube-type bounded symmetric domains. A representation theorem for these operators and for classes of abstract Toeplitz elements in C*-algebras is proved. This is used to give a unified treatment to index theory in this setting, and a variety of new index theorems are proved that generalize the Gohberg–Krein theorem for Toeplitz operators on the Hardy space of the unit circle in the plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial Toeplitz operators on the weighted Bergman spaces of the Cartan domain $SU(n,n)/S(U(n)\times U(n))$

We consider Toeplitz operators on Bergman spaces over the bounded symmetric domain SU(n, n)/S(U(n)×U(n)). As a special case of a previous result, it was shown that Toeplitz operators with radial symbols (that is, symbols that are invariant under the action of S(U(n)×U(n))) generate a commutative C∗-algebra. As a consequence, it is possible to simultaneously diagonalize all Toeplitz operators wi...

متن کامل

Block Toeplitz operators with rational symbols

Toeplitz operators (or equivalently, Wiener-Hopf operators; more generally, block Toeplitz operators; and particularly, Toeplitz determinants) are of importance in connection with a variety of problems in physics, and in particular, in the field of quantum mechanics. For example, a study of solvable models in quantum mechanics uses the spectral theory of Toeplitz operators (cf. [Pr]); the one-d...

متن کامل

Time-Limited Toeplitz Operators on Abelian Groups: Applications in Information Theory and Subspace Approximation

Toeplitz operators are fundamental and ubiquitous in signal processing and information theory as models for linear, time-invariant (LTI) systems. Due to the fact that any practical system can access only signals of finite duration, time-limited restrictions of Toeplitz operators are naturally of interest. To provide a unifying treatment of such systems working on different signal domains, we co...

متن کامل

On the Hankel-norm Approximation of Upper-triangular Operators and Matrices

A matrix T = Tij ∞ i,j=−∞, which consists of a doubly indexed collection fT ijg of operators, is said to be upper when Tij = 0 for i > j. We consider the case where the Tij are finite matrices and the operator T is bounded, and such that the Tij are generated by a strictly stable, non-stationary but linear dynamical state space model or colligation. For such a model, we consider model reduction...

متن کامل

An index theorem for Toeplitz operators on odd-dimensional manifolds with boundary

We establish an index theorem for Toeplitz operators on odd-dimensional spin manifolds with boundary. It may be thought of as an odd-dimensional analogue of the Atiyah–Patodi–Singer index theorem for Dirac operators on manifolds with boundary. In particular, there occurs naturally an invariant of η type associated to K1 representatives on even-dimensional manifolds, which should be of independe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010